Gas sensors and analytical chemistry

The combination of a small Doppler width, a complex rotational signature, and high spectral brightness make submillimeter electronic techniques a unique and powerful analytical tool.

[1][2][3][4][5][6][7]

References

  1. Albert, S., Petkie, D. T., Bettens, R. P. A., Belov, S. P. & De Lucia, F. C. FASSST: A new Gas-Phase Analytical Tool. Anal. Chem. 70, 719A-727A (1998).
  2. Medvedev, I. R., Behnke, M. & De Lucia, F. C. Fast analysis of gases in the submillimeter/terahertz with "absolute" specificity. Appl. Phys. Lett. 86, 154105 (2005).
  3. Medvedev, I. R., Behnke, M. & De Lucia, F. C. Chemical analysis in the submillimeter spectral region with a compact solid state system. Analyst 131, 1299-1307 (2006).
  4. De Lucia, F. C., Petkie, D. T. & Everitt, H. O. A Double Resonance Approach to Submillimeter/Terahertz Remote Sensing at Atmospheric Pressure. IEEE J. Quantum Electron. 45, 163-170 (2009).
  5. Medvedev, I. R., Neese, C. F., Plummer, G. M. & De Lucia, F. C. Submillimeter Spectroscopy for Chemical Analysis with Absolute Specificity. Opt. Lett. 35, 1533-1535 (2010).
  6. Medvedev, I. R., Neese, C. F., Plummer, G. M. & De Lucia, F. C. Impact of Atmospheric Clutter on Doppler-limited Gas Sensors in the Submillimeter/Terahertz. Appl. Opt. 50, 3028-3042 (2011).
  7. Neese, C. F., Medvedev, I. R., Plummer, G. M., Frank, A. J., Ball, C. D. & De Lucia, F. C. A Compact Submillimeter/Terahertz Gas Sensor with Efficient Gas Collection, Preconcentration, and ppt Sensitivity. IEEE Sens. J. 12, 2565-2574 (2012).