Collisional Energy Transfer

Because kT is large in comparison to the submillimeter quanta, submillimeter probes are especially sensitive.

[1][2][3][4][5][6]

References

  1. Matteson, W. H. & De Lucia, F. C. Millimeter Wave Spectroscopic Studies of Collision-induced Energy Transfer Processes in the 13CH3F Laser. IEEE J. Quantum Electron. 19, 1284-1293 (1983).
  2. Everitt, H. O. & De Lucia, F. C. A Time-Resolved Study of Rotational Energy Transfer into A and E Symmetry Species of 13CH3F. J. Chem. Phys. 90, 3520-3527 (1989).
  3. Everitt, H. O. & De Lucia, F. C. Rotational Energy Transfer in Small Polyatomic Molecules. Adv. At., Mol., Opt. Phys. 35, 331-400 (1995).
  4. Ball, C. D. & De Lucia, F. C. Direct Measurement of Rotationally Inelastic Cross Sections at Astrophysical and Quantum Collisional Temperatures. Phys. Rev. Lett. 81, 305-308 (1998).
  5. Ball, C. D. & De Lucia, F. C. Direct observation of L-doublet and hyperfine branching ratios for rotationally inelastic collisions of NO-He at 4.2 K. Chem. Phys. Lett. 300, 227-235 (1999).
  6. Oesterling, L. C., De Lucia, F. C. & Herbst, E. Millimeter-Wave Time-Resolved Studies of HCO+ - H2 Inelastic Collisions. Spectrochim. Acta, Part A 57, 705-716 (2001).